ENVIRONMENTAL MONITORING REPORT

FOR

6x600 MW COAL BASED POWER PLANT
OF KSK MAHANADI POWER COMPANY LTD
AT NARIYARA, JANJGIR-CHAMPA DISTRICT, CHHATTISGARH

MONTHLY REPORT: FEBRUARY-2025

Client:

KSK Mahanadi Power Company Ltd Nariyara, Chhattisgarh

Prepared by:

VIMTA Labs Ltd.
142, IDA, Phase-II, Cherlapally
Hyderabad – 500 051, Telangana State
www.vimta.com, env@vimta.com

February 2025

1.0 INTRODUCTION

KSK Mahanadi Power Company Limited has installed 3 X 600 MW Power Plant at Narayana, Janjgir Champa District, Chhattisgarh.

2.0 PROCESS DESCRIPTION

The 6x600 MW Power Plant has been constructed as a two phase configuration of 2x1800 MW unit, with two boilers. The project involves 6 Pulverized boiler, steam at 174 bars at 540 °C with six condensing turbo generator set having generating capacity of 600 MW of power each. Out six Units three units under operation and balance units are under construction.

3.0 DESCRIPTION OF ENVIRONMENT

The coal based thermal power plant is located near Nariyara village, Janjgir-Champa District, Chhattisgarh. The index map of the power plant and 10-km radius study area map are shown in **Figure-1** and **Figure-2** respectively.

The air, noise and water sampling locations are given in **Figure-3**, **Figure-4** and **Figure-5**.

February 2025

Source: Maps of India

FIGURE-1 INDEX MAP

February 2025

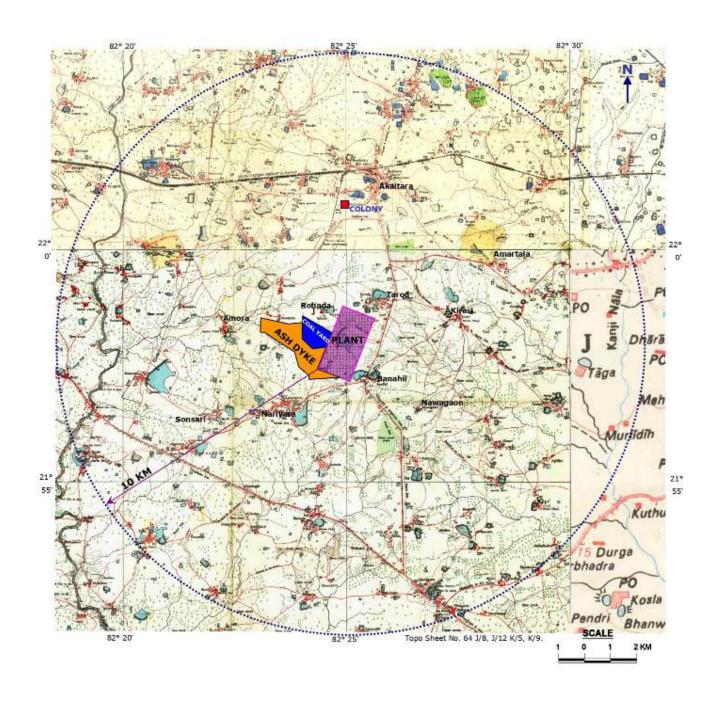
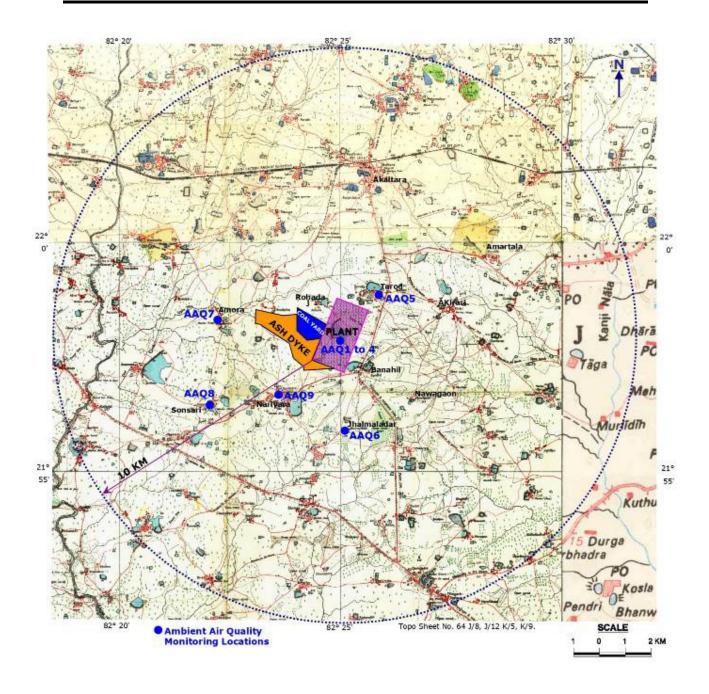



FIGURE-2 STUDY AREA MAP OF 10-KM RADIUS

February 2025

FIGURE-3 AMBIENT AIR QUALITY LOCATIONS

February 2025

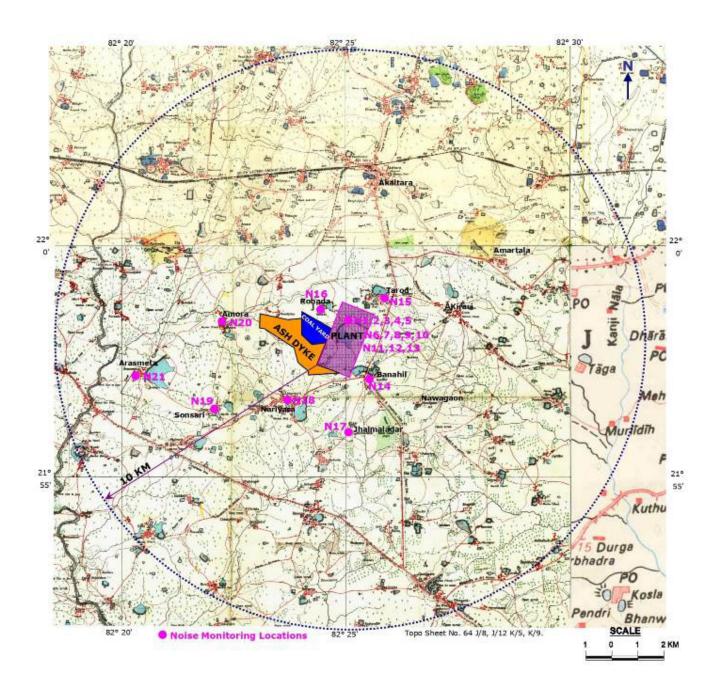


FIGURE-4
NOISE MONITORING LOCATIONS

February 2025

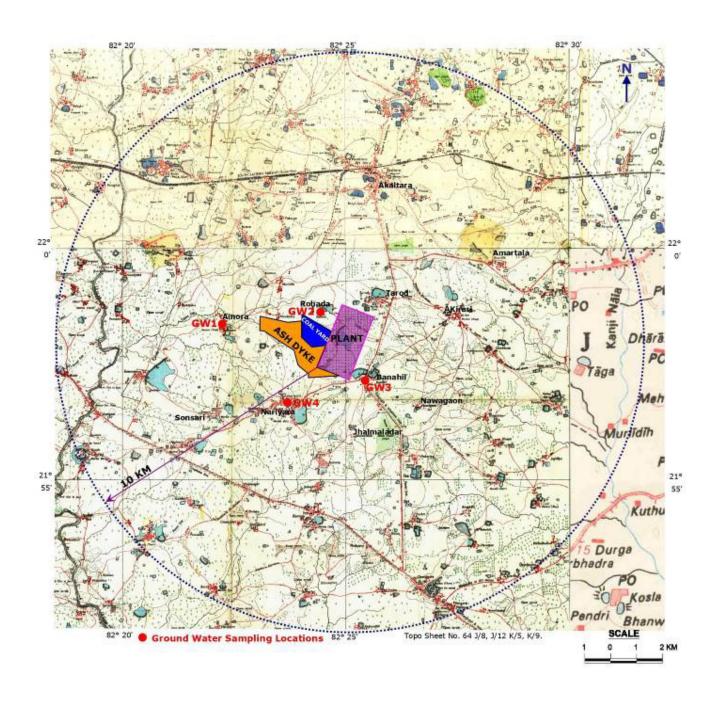


FIGURE-5
GROUND WATER SAMPLING LOCATIONS

February 2025

4.0 Scope of Work

M/s KSK Mahanadi Power Company Limited is regularly carrying out the environmental monitoring in and around plant site, as it is a requirement under consent for establishment and consent to Operate from CECB, Chhattisgarh. KSK Mahanadi Power Company Limited entrusted the job of regular environmental monitoring to M/s. Vimta Lab Ltd, Hyderabad.

Monitoring of Ambient Air Quality, water quality and noise level measurement are part of the scope of work given to M/s Vimta Lab Ltd. The environmental monitoring study has been carried out at the following locations:

A] Ambient Air Quality

TABLE-1
AMBIENT AIR QUALITY MONITORING LOCATIONS

Location Code	Location Name	Direction w.r.t Plant	Distance from Plant (Km)
Inside the Premis	ses		
AAQ1	BTG area	-	-
AAQ2	CHP area	-	-
AAQ3	DM Plant area	-	-
AAQ4	Ash handling area	-	-
Outside the Prem	ises		
AAQ5	Tarod Village	NNE	0.8
AAQ6	Jhalmala Village	S	2.2
AAQ7	Amora Village	W	4.0
AAQ8	Sonsari Village	SW	4.3
AAQ9	Nariyara Village	SSW	1.8

B] Stack monitoring

Power Plant Unit - II, Unit - III and Unit - IV

C] Ambient Noise Levels

TABLE-2
AMBIENT NOISE LEVEL MONITORING LOCATIONS

Location Code	Location Name	Direction w.r.t Plant	Distance from Plant (Km)
Inside the Prem	ises		•
N1	TG floor	-	-
N2	Cooling tower	-	-
N3	Main Gate	-	-
N4	Boiler feed pump	-	-
N5	Admin Building area	-	-
N6	CHP Machine area	-	-
N7	AHP area	-	-
N8	Ash Silo area	-	-
N9	CW Pump house	-	-
N10	Compressor 1	-	-
N11	Compressor 2	-	-
N12	V12 Compressor 3 -		-
N13	Compressor 4	-	-
Outside the Pre	mises		
N14	Banahil Village	E	0.7
N15	Tarod Village	NNE	0.8

February 2025

Location Code	Location Name	Direction w.r.t Plant	Distance from Plant (Km)
N16	Rogda Village	NW	1.5
N17	Jhalmala Village	S	2.2
N18	Nariyara Village	SSW	1.8
N19	Sonsari Village	SW	4.3
N20	Amora Village	W	4.0
N21	Arasmeta Village	W	6.8

D] Ground Water Sampling Locations

TABLE-3 GROUND WATER SAMPLING LOCATIONS

Location Code	Location Name	Direction w.r.t Plant	Distance from Plant (Km)
Ground Wate	er Locations		
GW1	Amora Village	W	4.0
GW2	Rogda Village	NW	1.5
GW3	Banahill Village	E	0.7
GW4	Nariyara Village	SSW	1.8
Ash Pond Gro	ound Water Locations	·	•
GW5	Ash pond Location-1		
GW6	Ash pond Location-2		
GW7	Ash pond Location-3		
GW8	Ash pond Location-4		

E] Waste water samples Locations

TABLE-4 WASTE WATER SAMPLING LOCATIONS

Sr. No.	Code	Location
Unit -I		
1	WW1	CT blow down
2	WW2	Boiler blow down
3	WW3	Condenser Cooling Water
4	WW4	Guard pond
5	WW5	STP Outlet

F] Water Depth Sampling Locations

TABLE-5 WATER DEPTH SAMPLING LOCATIONS

Location Code	Location Name	Direction w.r.t Plant	Distance from Plant (Km)
Ground Wat	er Depth Locations		
GW1	Banahill village	E	0.7
GW2	Nariyara Village	SSW	1.8
GW3	Amora Village	W	4.0
GW4	Rogda Village	NW	1.5
Ash pond Ar	ea		
ASH1	Ash pond Location-1		
ASH2	Ash pond Location-2		
ASH3	Ash pond Location-3		
ASH4	Ash pond Location-4		

February 2025

5.0 METHODOLOGY OF MONITORING AND SAMPLING PROCEDURES

5.1 Ambient Air Quality Monitoring

Respirable dust samplers with suitable calibration were located in selected sampling stations as mentioned above, based on topography and wind pattern of the region. Samples were collected continuously on 24 hours average basis for $PM_{2.5}$, PM_{10} , SO_2 , NO_2 , Carbon Monoxide (CO), Ammonia, Lead, Arsenic, Nickel, Ozone, Benzene and Benzo(a)pyrene. Air samples were analyzed for SO_2 by West- Gaeke Method using Spectrophotometer at a wave length of 560 nm. For NO_2 , the analysis was carried out using Sodium Arsenite Method, spetrophotometrically at a wave length of 540 nm. The Fine Particulate Matter $PM_{2.5}$ & PM_{10} is calculated by using gravimetric analysis. Pre-weighed Teflon filter paper and whatman GFA filter papers were used for determining the respirable particulate matter. The details of the sampling locations are presented in below **Table-1**.

5.2 Stack Gas Sampling

The stack sampling was carried out using ISO-Kinetic Method using pre-calibrated stack kit. Glass fiber thimbles were used for collecting particulate matter.

5.3 Ambient Noise Monitoring

Sound Pressure Levels (SPL) measurements were recorded at 8 locations. The readings were taken for every hour for 24-hrs. The day noise levels have been monitored during 6 am to 10 pm and night noise levels during 10 pm to 6 am at all the locations covered in the study area and 13 work zone noise levels. The details of the sampling locations are given in **Table-2.**

During each hour parameters like L10, L50, L90 and Leq were directly computed by the instrument based on the sound pressure levels.

5.4 Water Sampling

Water sample were collected and analyzed for Total Suspended Solids, Total Dissolved Solids, pH, Dissolved oxygen, Chemical Oxygen Demand, Biochemical Oxygen Demand, Oil & Grease, chlorides, sulphates, phosphates(Total), Zinc, chromium, copper, Iron(Total), as per standard methods published by APHA. The details of the sampling locations are given in **Table-3**.

5.5 Waste water Sampling

Waste water samples were collected and analyzed for Total Suspended Solids, Total Dissolved Solids, pH, Dissolved oxygen, Chemical Oxygen Demand, Biochemical Oxygen Demand, Oil & Grease, chlorides, sulphates, phosphates(Total), Zinc, chromium, copper, Iron(Total), as per standard methods published by APHA. The details of the sampling locations are given in **Table-4** and Water Depth levels of sampling locations are given in **Table-5**.

February 2025

6.0 QUALITY ASSURANCE

Vimta Labs Ltd is accredited by NABL Govt. of India and follows quality systems as per ISO/IEC 17025-2017. The QA/QC procedures are laid prior to sample collection and laboratory analysis. It includes the standard procedures of sample collection, preservation, transportation and laboratory analysis with all documented procedures and continuous monitoring of Quality Control division.

7.0 RESULTS OF SURVEY DATA

The monitoring results of Ambient Air Quality analysis for the month of **February-2025** are presented in below **Table-6 to Table-10**.

7.1 Ambient Air Quality Monitoring Results

TABLE-6
AAO MONITORING RESULTS

		AQ MONTOKI	•		
Monitoring Date	PM2.5 Particulate M	PM10 latter(µg/m³)	SO₂ μg/m³	NO ₂ μg/m³	CO mg/m³
BTG area - AAQ1		(13)			
03.02.2025	45.7	71.1	15.1	17.2	0.248
06.02.2025	40.0	67.6	16.8	19.6	0.274
10.02.2025	45.6	68.4	14.8	17.5	0.261
13.02.2025	39.6	65.5	16.4	20.4	0.267
17.02.2025	48.2	67.5	14.7	17.8	0.294
20.02.2025	43.5	66.8	17.0	19.7	0.270
24.02.2025	48.3	73.9	15.6	16.7	0.286
27.02.2025	41.6	70.1	17.0	20.5	0.272
Max	48.3	73.9	17.0	20.5	0.294
Min`	39.6	65.5	14.7	16.7	0.248
Avg	44.1	68.9	15.9	18.7	0.272
98%le	48.3	73.5	17.0	20.5	0.293
CHP area – AAQ2		70.0			0.250
03.02.2025	45.7	75.9	16.7	19.5	0.276
06.02.2025	50.2	72.5	18.4	22.1	0.313
10.02.2025	47.8	80.5	15.8	20.8	0.318
13.02.2025	41.7	74.3	18.3	21.6	0.278
17.02.2025	51.6	76.6	15.7	17.6	0.311
20.02.2025	43.4	73.7	17.9	22.1	0.283
24.02.2025	49.3	77.5	15.3	16.3	0.321
27.02.2025	39.7	74.9	16.8	18.8	0.295
Max	51.6	80.5	18.4	22.1	0.321
Min	39.7	72.5	15.3	16.3	0.276
Avg	46.2	75.7	16.9	19.9	0.299
98%le	51.4	80.1	18.4	22.1	0.321
DM plant area – A	AQ3	'		•	
03.02.2025	41.4	59.8	15.3	18.0	0.244
06.02.2025	39.1	70.4	13.4	17.2	0.271
10.02.2025	38.2	54.8	15.7	16.5	0.239
13.02.2025	40.7	63.0	13.8	13.9	0.263
17.02.2025	37.0	58.2	15.3	17.8	0.281
20.02.2025	42.6	65.1	12.7	15.4	0.254
24.02.2025	37.9	63.5	14.6	17.6	0.250
27.02.2025	43.1	69.2	12.4	16.4	0.262
Max	43.1	70.4	15.7	18.0	0.281
Min	37.0	54.8	12.4	13.9	0.239
Avg	40.0	63.0	14.2	16.6	0.258
98%le	43.0	70.2	15.6	18.0	0.280

February 2025

TABLE-7 AAQ MONITORING RESULTS

Monitoring	PM2.5	PM10	SO ₂	NO ₂	СО
Date	Partic	ulate	μg/m³	μg/m³	mg/m³
Ash handling are		•			
03.02.2025	44.5	68.0	17.4	20.7	0.306
06.02.2025	47.9	80.7	14.5	17.3	0.288
10.02.2025	40.0	73.9	16.8	19.6	0.252
13.02.2025	41.8	79.2	15.2	18.5	0.283
17.02.2025	46.5	69.4	17.5	19.6	0.297
20.02.2025	48.2	83.0	13.8	15.5	0.306
24.02.2025	44.5	69.2	16.4	20.5	0.296
27.02.2025	43.4	78.6	13.4	15.8	0.291
Max	48.2	83.0	17.5	20.7	0.306
Min	40.0	68.0	13.4	15.5	0.252
Avg	44.6	75.2	15.6	18.4	0.290
98%le	48.2	82.4	17.5	20.7	0.306
Tarod Village – A	AQ5				
03.02.2025	33.2	55.5	11.1	12.7	0.160
06.02.2025	29.1	60.4	13.3	14.3	0.174
10.02.2025	30.0	54.2	12.1	15.5	0.155
13.02.2025	34.9	60.6	13.3	14.4	0.149
17.02.2025	31.7	56.1	11.9	14.0	0.165
20.02.2025	38.2	62.4	13.5	15.7	0.122
24.02.2025	35.7	54.3	11.1	12.9	0.197
27.02.2025	30.4	57.3	13.2	14.9	0.121
Max	38.2	62.4	13.5	15.7	0.197
Min	29.1	54.2	11.1	12.7	0.121
Avg	32.9	57.6	12.4	14.3	0.155
98%le	37.9	62.1	13.5	15.7	0.194
Jhalmala Village	- AAQ6				
03.02.2025	36.8	54.4	10.8	13.0	0.180
06.02.2025	32.4	55.1	12.4	14.9	0.157
10.02.2025	35.2	48.0	11.3	12.4	0.138
13.02.2025	31.6	57.3	13.1	14.7	0.152
17.02.2025	33.3	50.7	10.5	13.1	0.181
20.02.2025	32.5	55.4	12.3	14.8	0.130
24.02.2025	36.9	46.4	13.3	12.1	0.172
27.02.2025	31.7	56.5	11.9	14.3	0.156
Max	36.9	57.3	13.3	14.9	0.181
Min	31.6	46.4	10.5	12.1	0.130
Avg	33.8	53.0	12.0	13.7	0.158
98%le	36.9	57.2	13.3	14.9	0.181
Limits as per NAAQS	60	100	80	80	02

Teflon filter paper was used in PM2.5 & whatman filter paper for PM10 weighed in Mettler electronic balance and computed as per standard methods PM2.5, PM10, SO₂, NOx is monitored on 24 hrs. Basis CO is monitored on 8 hours basis All the values are expressed in $\mu g/m^3$ except CO is measured in mg/m^3

February 2025

TABLE-8 AAQ MONITORING RESULTS

Monitoring	PM2.5	PM10	SO ₂	NO ₂	СО
Date	Partio	culate	μg/m³	μg/m³	mg/m³
Amora Village -	AAQ7				
03.02.2025	33.5	58.8	11.2	13.5	0.149
06.02.2025	34.8	63.2	13.4	14.6	0.156
10.02.2025	32.8	55.2	12.1	12.8	0.120
13.02.2025	29.9	60.3	11.5	14.1	0.151
17.02.2025	33.3	55.1	12.8	14.0	0.128
20.02.2025	31.0	65.3	13.7	15.0	0.137
24.02.2025	34.1	58.1	11.5	13.4	0.154
27.02.2025	32.1	56.5	12.6	14.8	0.136
Max	34.8	65.3	13.7	15.0	0.156
Min	29.9	55.1	11.2	12.8	0.120
Avg	32.7	59.1	12.4	14.0	0.141
98%le	34.7	65.0	13.7	15.0	0.156
Sonsari Village	_				1 0.200
03.02.2025	36.1	53.3	11.3	13.0	0.160
06.02.2025	30.1	55.8	12.7	14.1	0.152
10.02.2025	36.4	54.6	10.8	13.2	0.130
13.02.2025	32.6	62.2	11.9	13.9	0.163
17.02.2025	34.3	53.2	10.8	12.3	0.138
20.02.2025	30.9	56.3	13.5	14.4	0.160
24.02.2025	32.8	58.2	11.4	13.3	0.159
27.02.2025	35.1	55.5	12.7	14.6	0.143
Max	36.4	62.2	13.5	14.6	0.163
Min	30.1	53.2	10.8	12.3	0.130
Avg	33.5	56.1	11.9	13.6	0.151
98%le	36.4	61.6	13.4	14.6	0.163
Nariyara Village	- AAO9		'		
03.02.2025	35.1	52.2	10.3	11.9	0.137
06.02.2025	31.8	54.4	12.2	13.6	0.162
10.02.2025	34.1	53.4	10.7	12.3	0.128
13.02.2025	27.1	53.9	12.0	14.4	0.172
17.02.2025	35.4	53.3	11.5	13.1	0.165
20.02.2025	29.6	51.0	12.2	14.2	0.122
24.02.2025	31.9	53.4	11.1	13.3	0.139
27.02.2025	33.9	52.0	10.7	12.5	0.124
Max	35.4	54.4	12.2	14.4	0.172
Min	27.1	51.0	10.3	11.9	0.122
Avg	32.4	53.0	11.3	13.2	0.144
98%le	35.4	54.3	12.2	14.4	0.171
Limits as per NAAQS	60	100	80	80	02

Teflon filter paper was used in PM2.5 & whatman filter paper for PM10 weighed in Mettler electronic balance and computed as per standard methods PM2.5, PM10, SO₂, NOx is monitored on 24 hrs. Basis CO is monitored on 8 hours basis All the values are expressed in $\mu g/m^3$ except CO is measured in mg/m^3

February 2025

TABLE-9
AAQ MONITORING RESULTS

			AAQ MUNI	IOKING	KL30L13			1
Monitoring Date & Location	Arsenic ng/m3	Nickel ng/m3	Lead µg/m3	O₃ µg/m3	NH₃ µg/m3	C₅H₅ µg/m3	Benzo(a) Pyrene ng/m3	Hg µg/m3
BTG area – AA	Q1				I		1	1
03.02.2025	<1.0	<1.0	< 0.001	9.2	<5.0	<1.0	<0.1	< 0.001
06.02.2025	<1.0	1.8	< 0.001	10.4	<5.0	<1.0	< 0.1	< 0.001
10.02.2025	<1.0	1.3	<0.001	6.8	<5.0	<1.0	<0.1	<0.001
13.02.2025	<1.0	2.3	< 0.001	9.7	<5.0	<1.0	< 0.1	< 0.001
17.02.2025	<1.0	1.5	< 0.001	10.8	<5.0	<1.0	< 0.1	< 0.001
20.02.2025	<1.0	<1.0	< 0.001	8.2	<5.0	<1.0	< 0.1	< 0.001
24.02.2025	<1.0	1.8	< 0.001	11.2	<5.0	<1.0	<0.1	< 0.001
27.02.2025	<1.0	1.4	< 0.001	10.1	<5.0	<1.0	< 0.1	< 0.001
Max	<1.0	2.3	<0.001	11.2	<5.0	<1.0	<0.1	<0.001
Min	<1.0	<1.0	<0.001	6.8	<5.0	<1.0	<0.1	<0.001
Avg	<1.0	1.7	<0.001	9.6	<5.0	<1.0	<0.1	<0.001
98%	<1.0	2.3	<0.001	11.1	<5.0	<1.0	<0.1	<0.001
CHP area - AA	02			•				
03.02.2025	<1.0	2.5	< 0.001	9.5	<5.0	<1.0	<0.1	< 0.001
06.02.2025	<1.0	1.7	< 0.001	10.5	<5.0	<1.0	<0.1	< 0.001
10.02.2025	<1.0	1.5	< 0.001	8.2	<5.0	<1.0	<0.1	< 0.001
13.02.2025	<1.0	2.0	< 0.001	12.9	<5.0	<1.0	< 0.1	< 0.001
17.02.2025	<1.0	<1.0	< 0.001	10.7	<5.0	<1.0	<0.1	< 0.001
20.02.2025	<1.0	1.5	< 0.001	9.6	<5.0	<1.0	<0.1	< 0.001
24.02.2025	<1.0	2.3	< 0.001	10.6	<5.0	<1.0	<0.1	< 0.001
27.02.2025	<1.0	2.1	< 0.001	11.5	<5.0	<1.0	<0.1	< 0.001
Max	<1.0	2.5	<0.001	12.9	<5.0	<1.0	<0.1	<0.001
Min	<1.0	<1.0	<0.001	8.2	<5.0	<1.0	<0.1	<0.001
Avg	<1.0	1.9	<0.001	10.4	<5.0	<1.0	<0.1	<0.001
98%	<1.0	2.5	<0.001	12.7	<5.0	<1.0	<0.1	<0.001
DM plant area	- AAQ3							
03.02.2025	<1.0	1.6	< 0.001	9.7	<5.0	<1.0	<0.1	< 0.001
06.02.2025	<1.0	1.2	< 0.001	6.5	<5.0	<1.0	< 0.1	< 0.001
10.02.2025	<1.0	<1.0	< 0.001	10.0	<5.0	<1.0	< 0.1	< 0.001
13.02.2025	<1.0	1.7	< 0.001	9.5	<5.0	<1.0	< 0.1	< 0.001
17.02.2025	<1.0	1.1	< 0.001	8.5	<5.0	<1.0	<0.1	< 0.001
20.02.2025	<1.0	1.9	< 0.001	7.9	<5.0	<1.0	<0.1	< 0.001
24.02.2025	<1.0	<1.0	< 0.001	10.4	<5.0	<1.0	<0.1	< 0.001
27.02.2025	<1.0	1.5	< 0.001	9.5	<5.0	<1.0	<0.1	< 0.001
Max	<1.0	1.9	<0.001	10.4	<5.0	<1.0	<0.1	<0.001
Min	<1.0	<1.0	<0.001	6.5	<5.0	<1.0	<0.1	<0.001
Avg	<1.0	1.5	<0.001	9.0	<5.0	<1.0	<0.1	<0.001
98%	<1.0	1.9	<0.001	10.3	<5.0	<1.0	<0.1	<0.001
Limits as per	06	20	1.0	100	400	05	01	-

Below Detectable Limit for As and Ni 1.0 ng/m^3 Below Detectable Limit for Pb 0.001 $\mu g/m^3$ Ozone and CO is monitored on 8 hours basis Below Detectable Limit for O_3 50 $\mu g/m^3$ Below Detectable Limit for NH $_3$ 5.0 $\mu g/m^3$

February 2025

TABLE-10 AAQ MONITORING RESULTS

Monitoring Date & Location	Arsenic ng/m3	Nickel ng/m3	Lead µg/m3	O₃ µg/m3	NH₃ μg/m 3	C₅H₅ µg/m3	Benzo(a) Pyrene ng/m3	Hg μg/m3
Ash handling a	area – AAQ	4						
03.02.2025	<1.0	1.8	< 0.001	10.2	<5.0	<1.0	<0.1	< 0.001
06.02.2025	<1.0	1.4	< 0.001	8.5	<5.0	<1.0	< 0.1	< 0.001
10.02.2025	<1.0	<1.0	< 0.001	11.5	<5.0	<1.0	< 0.1	< 0.001
13.02.2025	<1.0	1.6	< 0.001	9.7	<5.0	<1.0	<0.1	< 0.001
17.02.2025	<1.0	2.2	< 0.001	10.4	<5.0	<1.0	<0.1	< 0.001
20.02.2025	<1.0	2.8	< 0.001	13.5	<5.0	<1.0	< 0.1	< 0.001
24.02.2025	<1.0	1.7	< 0.001	10.8	<5.0	<1.0	< 0.1	< 0.001
27.02.2025	<1.0	2.2	< 0.001	11.6	<5.0	<1.0	<0.1	< 0.001
Max	<1.0	2.8	<0.001	13.5	<5.0	<1.0	<0.1	<0.001
Min	<1.0	<1.0	<0.001	8.5	<5.0	<1.0	<0.1	<0.001
Avg	<1.0	2.0	<0.001	10.8	<5.0	<1.0	<0.1	<0.001
98%	<1.0	2.7	<0.001	13.2	<5.0	<1.0	<0.1	<0.001
Tarod Village -	- AAQ5							
03.02.2025	<1.0	<1.0	< 0.001	5.3	<5.0	<1.0	< 0.1	<0.001
06.02.2025	<1.0	<1.0	< 0.001	7.2	<5.0	<1.0	< 0.1	< 0.001
10.02.2025	<1.0	<1.0	< 0.001	5.8	<5.0	<1.0	<0.1	< 0.001
13.02.2025	<1.0	<1.0	< 0.001	7.7	<5.0	<1.0	< 0.1	< 0.001
17.02.2025	<1.0	<1.0	< 0.001	5.7	<5.0	<1.0	< 0.1	<0.001
20.02.2025	<1.0	<1.0	< 0.001	8.8	<5.0	<1.0	<0.1	< 0.001
24.02.2025	<1.0	<1.0	< 0.001	6.5	<5.0	<1.0	<0.1	< 0.001
27.02.2025	<1.0	<1.0	< 0.001	7.2	<5.0	<1.0	<0.1	< 0.001
Max	<1.0	<1.0	<0.001	8.8	<5.0	<1.0	<0.1	<0.001
Min	<1.0	<1.0	<0.001	5.3	<5.0	<1.0	<0.1	<0.001
Avg	<1.0	<1.0	<0.001	6.8	<5.0	<1.0	<0.1	<0.001
98%	<1.0	<1.0	<0.001	8.6	<5.0	<1.0	<0.1	<0.001
Jhalmala Villa	ge- AAQ-6							
03.02.2025	<1.0	<1.0	< 0.001	6.5	<5.0	<1.0	<0.1	< 0.001
06.02.2025	<1.0	<1.0	< 0.001	6.6	<5.0	<1.0	<0.1	< 0.001
10.02.2025	<1.0	<1.0	< 0.001	5.2	<5.0	<1.0	<0.1	< 0.001
13.02.2025	<1.0	<1.0	< 0.001	6.7	<5.0	<1.0	<0.1	< 0.001
17.02.2025	<1.0	<1.0	< 0.001	5.3	<5.0	<1.0	<0.1	<0.001
20.02.2025	<1.0	<1.0	< 0.001	6.6	<5.0	<1.0	<0.1	<0.001
24.02.2025	<1.0	<1.0	< 0.001	7.4	<5.0	<1.0	<0.1	<0.001
27.02.2025	<1.0	<1.0	< 0.001	6.7	<5.0	<1.0	<0.1	<0.001
Max	<1.0	<1.0	<0.001	7.4	<5.0	<1.0	<0.1	<0.001
Min	<1.0	<1.0	<0.001	5.2	<5.0	<1.0	<0.1	<0.001
Avg	<1.0	<1.0	<0.001	6.4	<5.0	<1.0	<0.1	<0.001
98%	<1.0	<1.0	<0.001	7.3	<5.0	<1.0	<0.1	<0.001
Limits as per	06	20	1.0	100	400	05	01	-

February 2025

TABLE-11 AAQ MONITORING RESULTS

Monitoring Date & Location	Arsenic ng/m3	Nickel ng/m3	Lead µg/m3	O₃ µg/m3	NH₃ µg/m3	C₅H₅ µg/m3	Benzo(a) Pyrene ng/m3	Hg µg/m3
Amora Village	- AAQ7			•			•	•
03.02.2025	<1.0	<1.0	< 0.001	6.0	<5.0	<1.0	<0.1	< 0.001
06.02.2025	<1.0	<1.0	< 0.001	7.4	<5.0	<1.0	<0.1	< 0.001
10.02.2025	<1.0	<1.0	< 0.001	6.4	<5.0	<1.0	<0.1	< 0.001
13.02.2025	<1.0	<1.0	< 0.001	7.1	<5.0	<1.0	<0.1	<0.001
17.02.2025	<1.0	<1.0	< 0.001	5.6	<5.0	<1.0	<0.1	< 0.001
20.02.2025	<1.0	<1.0	< 0.001	8.4	<5.0	<1.0	<0.1	< 0.001
24.02.2025	<1.0	<1.0	< 0.001	7.5	<5.0	<1.0	<0.1	<0.001
27.02.2025	<1.0	<1.0	< 0.001	6.4	<5.0	<1.0	<0.1	< 0.001
Max	<1.0	<1.0	<0.001	8.4	<5.0	<1.0	<0.1	<0.00
Min	<1.0	<1.0	<0.001	5.6	<5.0	<1.0	<0.1	<0.00
Avg	<1.0	<1.0	<0.001	6.9	<5.0	<1.0	<0.1	<0.00
98%	<1.0	<1.0	<0.001	8.3	<5.0	<1.0	<0.1	<0.00
Sonsari Village	e – AAQ8							
03.02.2025	<1.0	<1.0	< 0.001	6.4	<5.0	<1.0	<0.1	<0.001
06.02.2025	<1.0	<1.0	< 0.001	8.0	<5.0	<1.0	<0.1	<0.001
10.02.2025	<1.0	<1.0	< 0.001	5.6	<5.0	<1.0	<0.1	< 0.001
13.02.2025	<1.0	<1.0	< 0.001	6.4	<5.0	<1.0	<0.1	<0.001
17.02.2025	<1.0	<1.0	< 0.001	8.1	<5.0	<1.0	<0.1	<0.001
20.02.2025	<1.0	<1.0	< 0.001	6.6	<5.0	<1.0	<0.1	<0.001
24.02.2025	<1.0	<1.0	< 0.001	6.9	<5.0	<1.0	<0.1	<0.001
27.02.2025	<1.0	<1.0	< 0.001	5.9	<5.0	<1.0	<0.1	<0.001
Max	<1.0	<1.0	<0.001	8.1	<5.0	<1.0	<0.1	<0.00
Min	<1.0	<1.0	<0.001	5.6	<5.0	<1.0	<0.1	<0.00
Avg	<1.0	<1.0	<0.001	6.7	<5.0	<1.0	<0.1	<0.00
98%	<1.0	<1.0	<0.001	8.1	<5.0	<1.0	<0.1	<0.00
Nariyara Villag	ge – AAQ9							
03.02.2025	<1.0	<1.0	< 0.001	5.0	< 5.0	<1.0	<0.1	<0.001
06.02.2025	<1.0	<1.0	< 0.001	6.7	<5.0	<1.0	<0.1	< 0.001
10.02.2025	<1.0	<1.0	< 0.001	5.6	<5.0	<1.0	<0.1	<0.001
13.02.2025	<1.0	<1.0	< 0.001	7.1	<5.0	<1.0	<0.1	<0.001
17.02.2025	<1.0	<1.0	<0.001	4.4	<5.0	<1.0	<0.1	<0.001
20.02.2025	<1.0	<1.0	< 0.001	8.3	<5.0	<1.0	<0.1	<0.001
24.02.2025	<1.0	<1.0	< 0.001	5.2	<5.0	<1.0	<0.1	<0.001
27.02.2025	<1.0	<1.0	<0.001	6.8	<5.0	<1.0	<0.1	<0.001
Max	<1.0	<1.0	<0.001	8.3	<5.0	<1.0	<0.1	<0.00
Min	<1.0	<1.0	<0.001	4.4	<5.0	<1.0	<0.1	<0.00
Avg	<1.0	<1.0	<0.001	6.1	<5.0	<1.0	<0.1	<0.00
98%	<1.0	<1.0	<0.001	8.0	<5.0	<1.0	<0.1	<0.00
Limits as per	06	20	1.0	100	400	05	01	-

Below Detectable Limit for As and Ni 1.0 ng/m 3 Below Detectable Limit for Pb 0.001 μ g/m 3 Ozone and CO is monitored on 8 hours basis Below Detectable Limit for O $_3$ 50 μ g/m 3 Below Detectable Limit for NH $_3$ 5.0 μ g/m 3

February 2025

7.1.1 Observations (Inside the premises)

PM2.5: The maximum value for PM2.5 observed at CHP area as 51.6 μg /m³ and minimum value for PM2.5 at BTG plant area as 37.0 μg/m³. The 24 hours applicable limit inside the plant premises 60 μg /m³ for industrial area.

<u>PM10</u>: The maximum value for PM10 observed at AHP area as 83.0 μ g /m³ and minimum value for PM10 at DM Plant area as 54.8 μ g/m³. The 24 hours applicable limit inside the plant premises 100 μ g /m³ for industrial area.

<u>SO₂</u>: The maximum value for SO₂_observed at CHP plant area as 18.4 μg /m³ and minimum value for SO₂ at DM Plant area as 12.4 μg /m³. The 24 hours applicable limit inside the plant premises 80 μg /m³ for industrial area.

 $\underline{\text{NO}}_2$: The maximum value for $\underline{\text{NO}}_2$ observed at CHP area as 22.1 μg /m³ and minimum value for $\underline{\text{NO}}_2$ at DM Plant area as 13.9 $\mu\text{g}/\text{m}^3$. The 24 hours applicable limit inside the plant premises 80 μg /m³ for industrial area.

 $\underline{\text{CO}}$: The maximum value for CO observed at CHP area as 0.321 mg/m³ and minimum value for CO at DM plant as 0.239 mg/m³. The 8 hours applicable limit inside the plant premises 02 mg/m³ for industrial area.

Ammonia: The maximum and minimum value for Ammonia observed at all the locations as <5.0 μg /m³. The 24 hours' applicable limit inside the plant premises 400 μg /m³ for industrial area

<u>Nickel</u>: The maximum value for Nickel observed at AHP area as 2.8 ng /m 3 and <1.0 ng /m minimum value for BTG, DM, CHP & AHP Plant area. The 24 hours' applicable limit inside the plant premises 20 ng/m 3 for industrial area.

<u>Arsenic</u>: The maximum and minimum value for Arsenic observed at all the locations as <1.0 ng $/m^3$. The 24 hours applicable limit inside the plant premises 6 ng/m 3 for industrial area

<u>Lead</u>: The maximum value for Lead observed at aii the locations as <0.001 μ g /m³. The 24 hours' applicable limit inside the plant premises 1 μ g/m³ for industrial area.

<u>Ozone</u>: The maximum value for Ozone observed at AHP area as 13.5 μ g/m³ and minimum value for Ozone AHP area as 6.3 μ g /m³. The 8 hours' applicable limit inside the plant premises 100 μ g /m³ for industrial area.

<u>Benzo(a)Pyrene</u>: The maximum and minimum value for Benzo(a)Pyrene observed at all the locations as <0.1 ng $/m^3$. The 24 hours applicable limit inside the plant premises 1 ng/m³ for industrial area

Benzene: The maximum and minimum value for Benzene observed at all the locations as <1.0 μg /m 3 . The 24 hours applicable limit inside the plant premises 5 μg /m 3 for industrial area

February 2025

<u>Mercury</u>: The maximum and minimum value for Mercury observed at all the locations as $<0.001~\mu g~g/m^3$ for 24 hours.

7.1.2 Observations (Outside the premises)

<u>PM2.5</u>: The maximum value for PM2.5 observed at Tarod village as $38.2 \mu g / m^3$ and minimum value for PM2.5 at Nariyara village as $27.1 g / m^3$. The 24 hours applicable limit outside the plant premises $60 \mu g / m^3$ for Rural/Residential area.

PM10: The maximum value for PM10 observed at Amora village as 65.3 μ g /m³ and minimum value for PM10 at Jhalmala village as a 46.4 μ g /m³. The 24 hours applicable limit outside the plant premises 100 μ g /m³ for Rural/Residential area.

 SO_2 : The maximum value for SO_2 observed at Amora village as 13.7 μg /m³ and minimum value for SO_2 at Nariyara village as 10.3 μg /m³. The 24 hours applicable limit outside the Plant premises 80 μg /m³ for Rural/Residential area.

NOx: The maximum value for NOx observed at Tarod village as 15.7 μ g /m³ and minimum value for NOx at Nariyara village as 11.9 μ g /m³. The 24 hours applicable limit outside the plant premises 80 μ g /m³ for Rural/Residential area.

 \underline{CO} : The maximum value for CO observed at Tarod village as 0.197 mg/m³ and minimum value for CO at Amora village as 0.120 mg/m³. The 8 hours' applicable limit outside the plant premises 02 mg/m³ for Rural/Residential area.

Ammonia: The maximum and minimum value for Ammonia observed at all the locations as <5.0 μg /m³. The 24 hours applicable limit outside the plant premises 400 μg /m³ for Rural/Residential area.

<u>Nickel</u>: The maximum and minimum value for Nickel observed at all the locations as $<1.0~\text{ng/m}^3$. The 24 hours applicable limit outside the plant premises 20 $~\text{ng/m}^3$ for Rural/Residential area.

<u>Arsenic</u>: The maximum and minimum value for Arsenic observed at all the locations as <1.0 ng /m³. The 24 hours applicable limit outside the plant premises 6 ng/m³ for Rural/Residential area

<u>Lead</u>: The maximum and minimum value for Lead observed at all the locations as $<0.001~\mu g$ /m³. The 24 hours applicable limit outside the plant premises 1 μg /m³ for Rural/Residential area.

<u>Ozone</u>: The maximum value for Ozone observed at Tarod village as $8.8~\mu g$ /m³ and minimum value for Ozone at Nariyara village as $4.4~\mu g$ /m³. The 8 hours applicable limit outside the plant premises $100~\mu g$ /m³ for Rural/Residential area.

<u>Benzo(a)Pyrene</u>: The maximum and minimum value for Benzo(a)Pyrene observed at all the locations as <0.1 ng $/m^3$. The 24 hours applicable limit outside the plant premises 1 ng/m³ for Rural/Residential area

February 2025

Benzene: The maximum and minimum value for Benzene observed at all the locations as <1.0 μ g /m³. The 24 hours applicable limit outside the plant premises 5 μ g /m³for Rural/Residential area

Mercury: The maximum and minimum value for Mercury observed at all the locations as <0.001 μg /m³ for 24 hours.

Results and conclusions:

The results of the monitored data indicate that the ambient air quality of the region in general is conformity with respect to norms of National Ambient Air Quality standards of CPCB, at all locations monitored.

7.2 Noise Monitoring

7.2.1 <u>Source Noise Monitoring – Inside the Plant Premises</u>

The spot noise levels observed inside the premises at various locations is given in **Table-12**

TABLE-12
INDUSTRIAL NOISE LEVELS IN WORK ENVIRONMENT

Sr. No	Code	Location	Date of sampling	Noise Level Leq [dB(A)]
1	N1	TG floor	04/02/2025	84.0
2	N2	Cooling tower#3	04/02/2025	83.2
3	N3	Main Gate	05/02/2025	62.4
4	N4	Boiler feed pump	04/02/2025	83.8
5	N5	Admin Building area	05/02/2025	55.1
6	N6	CHP Machine area	07/02/2025	84.1
7	N7	AHP area	05/02/2025	83.5
8	N8	Ash Silo area	05/02/2025	82.6
9	N9	CW Pump house	04/02/2025	83.9
10	N10	Compressor 1	07/02/2025	84.3
11	N11	Compressor 2	07/02/2025	84.0
12	N12	Compressor 3	07/02/2025	83.8
13	N13	Compressor 4	07/02/2025	84.1

7.2.2 Observations

The industrial noise levels within the premises at Work Zone area are observed to be in the range of 55.1 to 84.3 dB (A), which are within the prescribed limit of 85 dB (A).

7.2.3 Noise Monitoring – Outside the Premises

The statistical analysis is done for measured noise levels at four locations in the study area. The parameters are analyzed for L_{day} , L_{night} , and L_{dn} . The statistical analysis results are given in **Table-13**.

February 2025

TABLE-13 AMBIENT NOISE LEVELS IN THE STUDY AREA

All the values are given in dB (A)

								w g	
Code	Location	Date of sampling	L ₁₀	L ₅₀	L ₉₀	Leq	L _{day}	Lnight	L _{dn}
N14	Banahill Village	17.02.2025	54.4	50.5	46.8	51.5	52.3	42.5	48.6
N15	Tarod Village	28.02.2025	52.8	48.9	45.2	49.9	50.7	41.6	47.3
N16	Rogda Village	27.02.2025	53.1	49.2	45.5	50.2	51.0	40.8	48.2
N17	Jhalmala Village	18.02.2025	54.2	50.3	46.6	51.3	52.1	42.8	49.1
N18	Nariyara Village	19.02.2025	53.3	49.4	45.7	50.4	51.2	41.9	47.7
N19	Sonsari Village	20.02.2025	55.2	51.3	47.6	52.3	53.1	42.4	49.3
N20	Amora Village	22.02.2025	52.9	49.0	45.3	50.0	50.8	41.4	47.6
N21	Arasmeta Village	21.02.2025	53.7	49.8	46.1	50.8	51.6	42.7	48.8

7.2.3.1 Observations

a) Day time Noise Levels (Lday)

Residential Area

The daytime (L_{day}) noise levels are observed to be in the range of 53.1 dB (A) – 50.7 dB (A), which are within the prescribed limit of 55 dB (A).

b) Night time Noise Levels (Lnight)

Residential Area

The nighttime (L_{night}) noise levels were observed to be in the range of 42.7 dB (A) – 40.8 dB (A), which are within the prescribed limit of 45 dB (A).

7.3 Ground Water Quality

Four ground water samples were collected around Ash pond area and four ground water samples were collected at villages around the plant site and analyzed for various parameters. The analytical results are presented below in **Table-14** and **Table-15**.

February 2025

TABLE-14 GROUND WATER QUALITY AROUND ASHPOND

Sr. No	Parameter	Units	GW5	GW6	GW7	GW8
	Sampling season			Winter 9		
	Sampling date		11.02.2025	11.02.2025	11.02.2025	11.02.2025
	Date of analysis		14.02.2025	14.02.2025	14.02.2025	14.02.2025
1	pH		7.84	7.65	7.81	7.53
2	Color	Hazen	6	5	4	3
3	Taste		Agreeable	Agreeable	Agreeable	Agreeable
4	Odour		Agreeable	Agreeable	Agreeable	Agreeable
5	Conductivity	μs/cm	1406	1073	1171	1025
6	Turbidity	NTU	3	2	4	4
7	Total Dissolved Solids	mg/l	928	709	758	656
8	Total Hardness as CaCO ₃	mg/l	406	320	361	322
9	Total Alkalinity as CaCO ₃	mg/l	285	218	248	208
10	Calcium as Ca ²⁺	mg/l	92.4	68.6	78.4	69.2
11	Magnesium as Mg ²⁺	mg/l	42.5	36.2	40.2	36.2
12	Residual Chlorine	mg/l	< 0.1	< 0.1	< 0.1	< 0.1
13	Boron as B	mg/l	0.8	0.5	0.6	0.4
14	Chloride as Cl-	mg/l	206.2	152.4	162.2	146.0
15	Sulphate as SO ₄ ²⁺	mg/l	98.2	86.7	87.1	78.2
16	Fluorides as F	mg/l	1.5	1.0	1.2	1.8
17	Nitrate as NO ₃	mg/l	25.2	12.5	17.8	14.7
18	Sodium as Na+	mg/l	124.0	86.9	91.6	78.4
19	Potassium as K ⁺	mg/l	21.5	17.5	19.5	15.7
20	Phenolic Compounds	mg/l	< 0.001	< 0.001	< 0.001	< 0.001
21	Cyanides as CN	mg/l	< 0.02	< 0.02	< 0.02	< 0.02
22	Anionic Detergents	mg/l	<0.1	< 0.1	<0.1	< 0.1
23	Mineral Oil	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
24	Cadmium as Cd	mg/l	< 0.003	< 0.003	< 0.003	< 0.003
25	Total Arsenic as As	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
26	Copper as Cu	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
27	Led as Pb	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
28	Manganse as Mn	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
29	Iron as Fe	mg/l	0.11	0.08	0.13	0.07
30	Total Chromium (as Cr)	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
31	Selenium as Se	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
32	Zinc as Zn	mg/l	0.28	0.36	0.24	0.32
33	Aluminium as Al	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
34	Mercury as Hg	mg/l	< 0.001	< 0.001	< 0.001	< 0.001
35	Pesticides	mg/l	Absent	Absent	Absent	Absent
36	E. Coli		Absent	Absent	Absent	Absent
37	Total Coliforms	MPN/100ml	Absent	Absent	Absent	Absent

Sampling Locations

GW5. Ash pond Location-1, GW6. Ash pond Location-2, GW7. Ash pond Location-3, GW8. Ash pond Location-4

7.3.1 Observations

7.3.2.1 Ground Water Around Ash pond Quality

The analysis results indicate that the pH and conductivity of the ground water was found to be in the range of 7.53– 7.84 and 1025 to 1406 μ S/cm. The Total Dissolved Solids were found to be in the ranging of 656 to 928 mg/L. The Other parameters like Chlorides, Sulphates, Nitrates and Fluorides were found to be in the range of observed to be 146 mg/l to 206.2 mg/l, 78.2 mg/l to 98.2 mg/l, 12.5 mg/l to 25.2 mg/l and 1.0 mg/l to 1.8 mg/l.

February 2025

TABLE-15 **GROUND WATER QUALITY IN STUDY AREA**

Sr. No	Parameter	Units	GW1	GW2	GW3	GW4	Limits as per IS:10500
	Sampling season			Winter	Season		
	Sampling date		12.02.2025	12.02.2025	12.02.2025	12.02.2025	
	Date of analysis		14.02.2025	14.02.2025	14.02.2025	14.02.2025	1
1	pH		7.45	7.27	7.56	7.34	6.5 - 8.5 (NR)
2	Color	Hazen	<1.0	<1.0	<1.0	<1.0	5(15)
3	Taste		Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
4	Odour		Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
5	Conductivity	μs/cm	600	1023	619	1260	\$
6	Turbidity	NTU	<1.0	<1.0	<1.0	<1.0	1(5)
7	Total Dissolved Solids	mg/l	385	665	395	821	500(2000)
8	Total Hardness as CaCO ₃	mg/l	196	324	210	401	200(600)
9	Total Alkalinity as CaCO ₃	mg/l	134	224	128	268	200(600)
10	Calcium as Ca ²⁺	mg/l	38.4	68.3	38.5	82.9	75(200)
11	Magnesium as Mg ²⁺	mg/l	24.2	37.2	27.6	47.2	30(100)
12	Residual Chlorine	mg/l	<0.1	<0.1	< 0.1	< 0.1	0.2(1)
13	Boron as B	mg/l	0.03	0.06	0.04	0.03	0.5(1)
14	Chloride as Cl-	mg/l	89.2	143.0	96.2	174.0	250(1000)
15	Sulphate as SO ₄ ²⁺	mg/l	31.2	70.8	34.4	98.5	200(400)
16	Fluorides as F	mg/l	0.7	0.9	0.6	0.8	1.0(1.5)
17	Nitrate as NO ₃	mg/l	7.1	10.8	9.8	13.6	45(NR)
18	Sodium as Na ⁺	mg/l	42.7	79.8	41.5	95.0	\$
19	Potassium as K ⁺	mg/l	9.3	11.2	7.5	17.4	\$
20	Phenolic Compounds	mg/l	< 0.001	< 0.001	< 0.001	< 0.001	0.001(0.002)
21	Cyanides as CN	mg/l	< 0.02	< 0.02	< 0.02	< 0.02	0.05 (NR)
22	Anionic Detergents	mg/l	< 0.1	< 0.1	< 0.1	< 0.1	0.2 (1.0)
23	Mineral Oil	mg/l	< 0.01	< 0.01	< 0.01	< 0.01	0.5 (NR)
24	Cadmium as Cd	mg/l	< 0.003	< 0.003	< 0.003	< 0.003	0.003 (NR)
25	Total Arsenic as As	mg/l	< 0.01	< 0.01	< 0.01	< 0.01	0.01 (0.05)
26	Copper as Cu	mg/l	< 0.01	< 0.01	< 0.01	< 0.01	0.05 (1.5)
27	Led as Pb	mg/l	< 0.01	< 0.01	< 0.01	< 0.01	0.01 (NR)
28	Manganse as Mn	mg/l	< 0.01	< 0.01	< 0.01	< 0.01	0.1 (0.3)
29	Iron as Fe	mg/l	0.10	0.07	0.06	0.11	0.3(NR)
30	Total Chromium (as Cr)	mg/l	< 0.01	< 0.01	< 0.01	< 0.01	0.05(NR)
31	Selenium as Se	mg/l	< 0.01	< 0.01	< 0.01	< 0.01	0.01(NR)
32	Zinc as Zn	mg/l	0.22	0.17	0.15	0.20	5(15)
33	Aluminium as Al	mg/l	< 0.01	< 0.01	< 0.01	< 0.01	0.03(0.2)
34	Mercury as Hg	mg/l	< 0.001	< 0.001	< 0.001	< 0.001	0.001(NR)
35	Pesticides	mg/l	Absent	Absent	Absent	Absent	Absent
36	E. Coli		Absent	Absent	Absent	Absent	Absent
37	Total Coliforms	MPN/100ml	Absent	Absent	Absent	Absent	10

Note: \$ - Limits not specified; NR - No Relaxation Limits are shown in IS 10500 are Acceptable limits (Requirement) and in parenthesis are Permissible limit in absence of alternate source

Sampling Locations

GW1. Amora Village (Bore well), GW2. Rogda (Bore well)

GW3. Banahill (Bore well)

, GW4. Nariyara Village (Bore well)

7.3.1 Observations

7.3.2.1 Ground Water Quality

The analysis results indicate that the pH and conductivity of the ground water was found to be in the range of 7.27 - 7.56 and 600 to 1260 μ S/cm. The Total Dissolved Solids were found to be well within the limits ranging from 385 to 821 mg/L. Other parameters like Chlorides, Sulphates, Nitrates and Fluorides were observed to be well within the prescribed limits. The overall physic-chemical analysis of all the parameters is well within the standards as per IS: 10500.

February 2025

7.4 Waste Water Quality

Four waste water samples were collected within the plant site and analyzed for various parameters. The analytical results are presented below in **Table-16**.

TABLE-16
WASTE WATER QUALITY

Sr. No.	Parameters	Units	CT Blow Down	Boiler Blow Down	Condenser Cooling water	Guard Pond	Limits as per CECB& CPCB
			WW1	WW2	WW3	WW4	
	Sampling Date		12.02.2025	12.02.2025	12.02.2025	12.02.2025	
	Date of Analysis		14.02.2025	14.02.2025	14.02.2025	14.02.2025	
1	p ^H	-	7.50	8.11	8.21	7.44	6.5-8.5
	Temperature	•C	27.8	28.3	28.0	27.5	
3	Total Dissolved Solids	mg/l	566	12	9	724	-
4	Total Suspended Solids	mg/l	22.8	<1.0	<1.0	57.6	100
5	Dissolved Oxygen	mg/l	5.4	5.2	5.1	5.2	-
6	Biochemical Oxygen Demand, (3 days at 27°C)	mg/l	<3	<3	<3	19	-
7	Chemical Oxygen Demand	mg/l	<5	<5	<5	72	-
8	Chlorides	mg/l	76.2	19.4	14.1	157.3	-
9	Sulphates	mg/l	62.3	13.7	10.7	132.5	-
10	Phosphates	mg/l	0.51	< 0.01	< 0.01	1.85	5.0
11	Zinc	mg/l	< 0.01	< 0.01	< 0.01	0.46	1.0
12	Chromium	mg/l	< 0.01	< 0.01	< 0.01	< 0.01	0.2
13	Copper	mg/l	< 0.01	< 0.01	< 0.01	< 0.01	1.0
14	Free Available chlorine	mg/l	<0.2	<0.2	<0.2	<0.2	0.5
15	Irons	mg/l	< 0.01	< 0.01	< 0.01	0.22	1.0
16	Oil & Grease	mg/l	<1.0	<1.0	<1.0	<1.0	20

7.4.1 Results and Conclusions

The data analysis to be as per CFO Norms and analytical results indicated that the guard pond waste water is well within the standard limits specified by EPA Notification [G.S.R.7, dt. Dec.22,1998].

7.4.2 Observations-Waste water quality.

The analysis results indicate that the pH ranges from 7.44-8.21 and the Total Suspended Solids were found to be within the limits ranging from <1.0-57.6 mg/l. Other parameters like Zinc, Chromium, Available, chloride, Iron and Oil& Grease were observed to be well within the prescribed limits.

February 2025

7.4.3 Sewage Waste Water Quality

One Sewage water samples is collected and analyzed for various parameters. The survey analytical results are given in **Table-17.**

TABLE-17
SEWAGE WASTE WATER QUALITY

Sr.No	Parameter	иом	WW5 (STP Outlet)
	Sampling Date		11.02.2025
	Date of Analysis		14.02.2025
1	pH	-	7.28
2	Total Dissolved Solids	mg/l	412
3	Total Suspended Solids	mg/l	30.7
4	Dissolved Oxygen	mg/l	5.3
5	Bio Chemical Oxygen Demand for 3 day 27°C	mg/l	11.5
6	Chemical Oxygen Demand	mg/l	45
7	Chlorides	mg/l	84.5
8	Sulphates	mg/l	103.7
9	Phosphates	mg/l	0.46
10	Zinc	mg/l	0.30
11	Chromium	mg/l	< 0.01
12	Copper	mg/l	< 0.01
13	Available Chlorine	mg/l	<0.2
14	Iron	mg/l	0.18
15	Oil and Grease	mg/l	<1.0

7.5 Water Depth measurement

Four ground water depths at villages and plant and four ash pond area locations were measured and results are given in **Table-18**.

TABLE-18
WATER DEPTH MEASUREMENT

Location Code	Location Name	Depth(m)
GW1	Banahil Village	2.75
GW2	Nariyara Village	3.12
GW3	Amora Village	3.28
GW4	Rogda Village	2.57
ASH1	Ash pond Location-1	6.90
ASH2	Ash pond Location-2	6.55
ASH3	Ash pond Location-3	7.45
ASH4	Ash pond Location-4	1.84

February 2025

7.6 Stack Emission Monitoring

The power plant has stack of height 275.0-m, which is the major source of air pollution. The stack emission monitoring for Unit – II, Unit - III & Unit - IV has been carried out and results are given in **Table-19 to 21.**

TABLE19 STACK EMISSION MONITORING UNIT -II

Sr. No.	Parameters	UOM	Result	Methods				
Date Of Sa	mpling :25/02/202	25						
Sampling T								
Duration O	Duration Of sampling : 60 mints							
Date of san	nple analysis : 27/02/20	25						
Details of	Details of the source							
1	Capacity	MW	600	-				
2	Stack Height	M	275	-				
3	Duct Dimension	M	7.0	-				
4	Duct area	m ²	38	-				
Flue Gas C	Characteristics							
5	Temperature	°C	119	USEPA 1,2,3&4				
6	Velocity	m/s	23.65	USEPA 1,2,3&4				
7	Volumetric Flow Rate	Nm³/s	657.3	USEPA 1,2,3&4				
8	Particulate Matter	mg/Nm³	26.08	USEPA 5				
9	Sulfur dioxide	mg/Nm³	974	USEPA 6				
10	Oxides of Nitrogen	mg/Nm³	408	USEPA 7				
11	Arsenic as As	mg/Nm³	0.023	USEPA method -29				
12	Cadmium as Cd	mg/Nm³	0.019	USEPA method -29				
13	Cobalt as Co	mg/Nm³	< 0.001	USEPA method -29				
14	Nickel as Ni	mg/Nm³	0.028	USEPA method -29				
15	Copper as Cu	mg/Nm³	0.039	USEPA method -29				
16	Mercury as Hg	mg/Nm³	0.012	USEPA method -29				
17	Chromium as Cr	mg/Nm³	0.025	USEPA method -29				
18	Manganese as Mn	mg/Nm³	0.047	USEPA method -29				
19	Antimony as Sb	mg/Nm³	< 0.001	USEPA method -29				
20	Lead as Pb	mg/Nm³	0.04	USEPA method -29				
21	Thallium as TI	mg/Nm³	< 0.001	USEPA method -29				
22	Vanadium as V	mg/Nm³	< 0.001	USEPA method -29				

The results indicate that the PM is observed as 26.08 mg/Nm³.

February 2025

TABLE-20 STACK EMISSION MONITORING UNIT -III

Sr. No.	Parameters	UOM	Result	Methods				
Date Of Sa	mpling : 25/02/20	25						
Sampling T	ime : 12.20 to	13.20 hrs						
Duration Of	Duration Of sampling : 60 mints							
Date of san	nple analysis : 27/02/20	25						
Details of	the source							
1	Capacity	MW	600	-				
2	Stack Height	М	275	-				
3	Duct Dimension	М	7.0	-				
4	Duct area	m ²	38	-				
Flue Gas C	Characteristics							
5	Temperature	°C	112	USEPA 1,2,3&4				
6	Velocity	m/s	21.74	USEPA 1,2,3&4				
7	Volumetric Flow Rate	Nm³/s	647.23	USEPA 1,2,3&4				
8	Particulate Matter	mg/Nm³	14.73	USEPA 5				
9	Sulfur dioxide	mg/Nm³	996	USEPA 6				
10	Oxides of Nitrogen	mg/Nm³	414	USEPA 7				
11	Arsenic as As	mg/Nm³	0.019	USEPA method -29				
12	Cadmium as Cd	mg/Nm³	0.021	USEPA method -29				
13	Cobalt as Co	mg/Nm³	< 0.001	USEPA method -29				
14	Nickel as Ni	mg/Nm³	0.024	USEPA method -29				
15	Copper as Cu	mg/Nm³	0.035	USEPA method -29				
16	Mercury as Hg	mg/Nm³	0.01	USEPA method -29				
17	Chromium as Cr	mg/Nm³	0.031	USEPA method -29				
18	Manganese as Mn	mg/Nm³	0.042	USEPA method -29				
19	Antimony as Sb	mg/Nm³	< 0.001	USEPA method -29				
20	Lead as Pb	mg/Nm³	0.031	USEPA method -29				
21	Thallium as TI	mg/Nm³	< 0.001	USEPA method -29				
22	Vanadium as V	mg/Nm³	< 0.001	USEPA method -29				

The results indicate that the PM is observed as 14.73 mg/Nm³.

February 2025

TABLE-21 STACK EMISSION MONITORING UNIT -IV

Sr. No.	Parameters	UOM	Result	Methods			
Date Of Sa	mpling : 28/02/20)25					
Sampling T	ime : 11.00 to	12.00 hrs					
Duration O	Duration Of sampling : 60 mints						
	nple analysis : 03/03/20	25					
Details of	the source						
1	Capacity	MW	600	-			
2	Stack Height	М	275	-			
3	Duct Dimension	М	10.4 x 7.8	-			
4	Duct area	m ²	81.12	-			
Flue Gas (Characteristics						
5	Temperature	°C	122	USEPA 1,2,3&4			
6	Velocity	m/s	18.82	USEPA 1,2,3&4			
7	Volumetric Flow Rate	Nm³/s	1056.3	USEPA 1,2,3&4			
8	Particulate Matter	mg/Nm³	18.56	USEPA 5			
9	Sulfur dioxide	mg/Nm³	960	USEPA 6			
10	Oxides of Nitrogen	mg/Nm³	420	USEPA 7			
11	Arsenic as As	mg/Nm³	0.03	USEPA method -29			
12	Cadmium as Cd	mg/Nm³	0.017	USEPA method -29			
13	Cobalt as Co	mg/Nm³	< 0.001	USEPA method -29			
14	Nickel as Ni	mg/Nm³	0.033	USEPA method -29			
15	Copper as Cu	mg/Nm³	0.035	USEPA method -29			
16	Mercury as Hg	mg/Nm³	0.009	USEPA method -29			
17	Chromium as Cr	mg/Nm³	0.036	USEPA method -29			
18	Manganese as Mn	mg/Nm³	0.027	USEPA method -29			
19	Antimony as Sb	mg/Nm³	< 0.001	USEPA method -29			
20	Lead as Pb	mg/Nm³	0.042	USEPA method -29			
21	Thallium as TI	mg/Nm³	< 0.001	USEPA method -29			
22	Vanadium as V	mg/Nm³	< 0.001	USEPA method -29			

The results indicate that the PM is observed as 18.56 mg/Nm³.